Rao-Blackwellised Particle Filtering for Fault Diagnosis

نویسنده

  • Nando de Freitas
چکیده

We tackle the fault diagnosis problem using conditionally Gaussian state space models and an efficient Monte Carlo method known as Rao-Blackwellised particle filtering. In this setting, there is one different linearGaussian state space model for each possible discrete state of operation. The task of diagnosis is to identify the discrete state of operation using the continuous measurements corrupted by Gaussian noise. TABLE OF CONTENTS

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Real-Time Monitoring of Complex Industrial Processes with Particle Filters

This paper discusses the application of particle filtering algorithms to fault diagnosis in complex industrial processes. We consider two ubiquitous processes: an industrial dryer and a level tank. For these applications, we compared three particle filtering variants: standard particle filtering, Rao-Blackwellised particle filtering and a version of RaoBlackwellised particle filtering that does...

متن کامل

Relational Dynamic Bayesian Networks

Stochastic processes that involve the creation of objects and relations over time are widespread, but relatively poorly studied. For example, accurate fault diagnosis in factory assembly processes requires inferring the probabilities of erroneous assembly operations, but doing this efficiently and accurately is difficult. Modeled as dynamic Bayesian networks, these processes have discrete varia...

متن کامل

Rao-Blackwellised Particle Filtering via Data Augmentation

Arnaud Doucet EE Engineering University of Melbourne Parkville, Victoria 3052 Australia [email protected] In this paper, we extend the Rao-Blackwellised particle filtering method to more complex hybrid models consisting of Gaussian latent variables and discrete observations. This is accomplished by augmenting the models with artificial variables that enable us to apply Rao-Blackwellisation. Ot...

متن کامل

Rao-Blackwellised particle methods for inference and identification

We consider the two related problems of state inference in nonlinear dynamical systems and nonlinear system identification. More precisely, based on noisy observations from some (in general) nonlinear and/or non-Gaussian dynamical system, we seek to estimate the system state as well as possible unknown static parameters of the system. We consider two different aspects of the state inference pro...

متن کامل

RMSE Based Performance Analysis of Marginalized Particle Filter and Rao Blackwellised Particle filter for Linear/Nonlinear State Space Models

Particle filters and Rao Blackwellised particle filter have been widely used in solving nonlinear filtering problems. The particle filter is fairly easy to implement and tune, its main drawback is that it is quite computer intensive, with the computational complexity increasing quickly with the state dimension. One solution to this problem is to marginalize out the states appearing linearly in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001